SIR ARTHUR LEWIS COMMUNITY COLLEGE DIVISION OF AGRICULTURE

ASSOCIATE DEGREE IN GENERAL AGRICULTURE

END OF SEMESTER ONE EXAMINATION
: \#M48
COURSE: AGM 105 -Agricultural Mathematics
Time : $\mathbf{2}$ hours $\mathbf{3 0}$ minutes

Date: December, 2009

1 Evaluate the following algebraic expression.
(a) v^{-4} / v^{-8}
(c) $(1 / 16)$
(d) $\left(a^{6} / 27\right)^{-2 / 3}$
(e) $\left(b^{1 / 3} / b^{-1 / 3}\right)^{1 / 2}$
(d) $(32 / 4)^{-2 / 5}$
2. Solve for the unknown
(a) $(4 y)^{5 / 4}=32$
(b) $4^{4 v+8}=64^{12-2 v}$
(c) $V 125^{m}=5 / 25^{m}$
(d) $\frac{1}{2}-\frac{2}{k}=\frac{3}{k}$
(e) $(\sqrt{ } 2)^{n}=\sqrt[3]{2}$
3. Factorise the following algebraic expressions
(a) $3 d^{2}-7 d+4$
(k) $60 x^{2} y^{2}-200 x y^{3}-35 y^{4}$
(C) $9 u^{2} v+6 u v^{2}$
(d) $6 r^{4}-9 r^{3}+3 r^{2}$
(e) $y^{3}-1$
(g) $k^{2}-81$
(h) $9 h^{3}+8$
(i) $\mathrm{m}^{6}+\mathrm{p}^{3}$

Simplify
(A) $\log 64-\log 128+\log 32$
(B) $\log 125+\log 25-\log 625$
(c) $\left(125 / k^{6}\right)^{1 / 2}$

5 (a)During one year the world consumption of crude oil increased at a rate of 5\%. Suppose the World consumption of oil continued to increase at the rate of 5% per year. How long would it take to double the world's consumption?
6. Suppose that a radioactive substance decays so that the amount present decreases by 11% per day. How much will be present after 6 days if the original amount weighs 40 kg ?
7. Solve for the unknown in each of the following:
(a) $32-4 y=16$
2 mks
(b) $27^{a+2}=3^{5-a}$
3 mks
(c) $\frac{3 x}{5}=x-6$
4 mks
(d) $7(5-k)=3(k-5)$
3 mks
8. A factory employs 18 women to sew 540 dresses. They take 6 weeks to do the job. If 12 women had been mployed instead, how long would it have taken them to sew the 540 dresses?

3 mks
9. (a) Determine three cnsecutive odd numbers whose sum is 123.
(b) Nine books are t be bought by a student. Some cost $\$ 6.00$ each and the remainder cost $\$ 6.50$ each. If the tal amount to be spent is $\$ 56.00$, how many of each will be bought? 5 mks
10. Evaluate:
(a) $0.021 \times 3.6 .4$
4 mks
(b) $5 \frac{2}{3}+2 \frac{3}{7} \frac{1}{4}$
4 mks
(c) Given th $m=3$ and $n=-2$, calculate the value of $2 m^{2}-3 n^{3} \quad 3 \mathrm{mks}$
(d) $\sqrt[3]{\frac{27}{8}}$

4 mks

